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1. Introduction

The refractive index structure parameter (C2) and derived parameters such as
the transverse coherence length (r,) and the isoplanatic angle (f,) are of
fundamental importance in understanding optical, radio, and acoustic
propagation in the atmosphere and are of considerable interest to many remote
sensing efforts. Optical turbulence has imposed a major problem upon optical
astronomy, degrading imagery observed with the large telescopes at major
observatories. Ground-based optical systems, thermosondes, and remote sensors
are used for sensing optical turbulence parameters. [1] High resolution C;
profiles can be obtained from radar or sodar measurements.

Brant et al. [2] provided measured seeing values at several observatories as well
as daytime seeing statistics at Sacramento Peak Observatory (SPO), NM. They
cautioned comparing absolute values because of different techniques used;
different local effects, such as dome seeing; calibration of different systems; and
the validity of the particular zenith angle correction used. The measured results
from SPO were taken using the solar vacuum telescope with the entrance
aperture 40 m above the ground. [2] The r, values are predicted to exceed
those that would be taken using a conventional near-surface dome, because no
dome was used and the configuration avoided a large contribution of turbulence
from near-ground convection.

The results presented here include r, values and C? time-height displays taken

at Apache Point Observatory (APO), surface wind measurements taken from

nearby SPO, and profiles of C% and wind measured using a 50-MHz radar at
White Sands Missile Range (WSMR), NM.




2. Site

APO is an astronomical observatory located in the Lincoln National Forest in
the Sacramento Mountains at an altitude of 2800 m (9200 ft) MSL. It is owned
and operated by the Astrophysical Research Consortium consisting of the
University of Chicago, Institute of Advanced Study, Johns Hopkins University,
New Mexico State University, Princeton University, University of Washington,
and Washington State University. APO was recently established for operation
(10 May 94) when the 3.5-m multipurpose telescope observed a solar eclipse.
This telescope is located at 32° 46” 50.4" N, 105° 49’ 11.7" W. Three other
telescopes at APO are in various stages of completion.

One unique-purpose telescope under design is the Sloan Digital Sky Survey
(SDSS) telescope that will be used under appropriate seeing conditions to survey
the night sky with sensitive imaging equipment. The enclosure for the SDSS
telescope was constructed on pillars west of the mountain ridge to reduce
degrading turbulent conditions, because excellent seeing is a requirement for
this effort. The Atmospheric Turbulence Measurement and Observation System
(ATMOS) used in this study was mounted atop the pedestal constructed for
future installation of the 2.5-m SDSS telescope. The sodar was installed on the
ridge southeast of the SDSS enclosure.

The 50-MHz radar used in this study is located at 32° 24’ N, 106° 21’ W at
1220 m MSL; approximately 13 km east of the post area at WSMR, NM. It
is one of four radar systems operated at the Atmospheric Profiler Research
Facility (APRF) in the Tularosa Basin about 25 km east of the Organ Mountains
and 68 km southeast of APO. The local area of the APRF is characterized by
flat terrain covered with low brush. The APRF is upwind of APO because the
prevalent winds in the area are generally southwesterly to westerly.




3. Methodology

3.1

Measurements were taken at APO on 21, 22, and 23 May and 8, 9, 23, 24, and
25 Jun 94 to examine the turbulent conditions during late spring at the SDSS
site. The tests involved the use of two systems at APO: ATMOS and a
single-axis sodar. Simultaneous profile measurements of wind and C? were
taken using the 50-MHz radar at the APRF. Supporting surface measurements
of wind were taken using a Surface Atmospheric Measurement System (SAMS)
at the National Solar Observatory at Sacramento Peak.

ATMOS

The classical astronomical seeing problem was put on a more quantitative basis
than in the past by the formulation of the transverse coherence length (r.): [3]

r, = 04236 [~ Cl@)da] ™" ¢y
where
k 27/\ (N is the wavelength of light)
(6 = refractive index structure parameter
z altitude above ground for vertical viewing.

Effects of atmospheric turbulence on optical systems sensitive to wavefront
distortions can be conveniently evaluated with knowledge of r,. Selection and
evaluation of observatory sites traditionally required an examination of
astronomical seeing. Methods to appraise seeing have been used for over 50 yr,
including measurements of image spread and motion by photographing star trails
and photoelectric detection of scintillation. [4,5,6,7] The Polaris seeing monitor
was used for the site selection of Kitt Peak National Observatory. [8] The
literature displays a natural application of the evolution of technology to seeing
monitors, such as replacing film techniques with linear-array charge-coupled
devices (CCDs) and, finally, CCD cameras. The analyses of line-spread
function information, obtained from stellar images using linear-array CCDs to
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obtain r, from the modulation transfer function as well as the differential image
motion technique used in this study, are documented by Eaton et al. [9]
Roddier [10] and Fried [11] summarized the single and differential image
motion techniques for evaluating seeing conditions.

ATMOS uses a differential angle-of-arrival approach by collecting light from
a single star with two subapertures (11-cm diameter) on a 35.5-cm (14-in.)
diameter telescope. The subapertures have optical glass wedges so the two
images can be separated and focused onto a two-dimensional CCD camera
placed at the focal plane. Two nearly parallel paths of turbulence are measured
at 23.5 cm separation. The method eliminates common system errors caused
by tracking errors, vibration, and wind loading, because such effects will
display identical image motion and not be included in the variance of centroid
differences. ATMOS includes a frame grabber that can vary exposure time and
frame rates to more than 300 frames/s. The CCD camera is intensified and
uses an electronic shutter capable of exposure times as short as 20 us.

The relationship used in this study to calculate r, with ATMOS is

2
r, = (22 1y 2 iy @
k? dPs? 36

where
F the focal length of the receiving telescope
d = the diameter of each subaperture
U center-to-center separation of the subapertures
o} = mean-square of the relative distance between the centroids of

the two images.




3.2 Sodar

Sodar (sonic detection and ranging) detects the temperature structure function
(C? and, ultimately, provides C2 through calculations using simultaneously
sampled ambient temperature and pressure values.

The sodar equation is

2 PrTgeZERLe
Cr = o A ©
E [P E][(—)(-G)][0.0039k""]
r T 2 R2

where
P, = transmitted power
P, = received power
R = range
k = acoustic wave number
T, = surface temperature
o' = molecular and classical adsorption
E, = receiver efficiency
E, = transmitter efficiency
c = speed of sound
T = pulse length
A = antenna area
G = antenna directivity
L. = excess attenuation coefficient.

The sodar is an Echosonde model single-axis system manufactured by Radian
Corporation. Three-axis systems are used for obtaining doppler winds. The
sodar is typically operated at 1850 Hz and 75-W transmitted power using a

11
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3.3

40-ms pulse length and a 1.5-m (5-ft) diameter antenna. Backscatter is
averaged every 10 s in 200 range gates to obtain C2 from 30 to 1024 m AGL.
Some researchers obtain C? values from sodar by comparing the backscattered
values to in situ values obtained from tower sensors. Calibration of the sodar
used in this study was accomplished by a first principles approach.

50-MHz Radar

Radar parameters of the 50-MHz radar, operated at a nominal central frequency
of 49.25 MHz and located at the APRF at WSMR, are described in Nastrom
and Eaton. [12] The system is identical to the NASA 50-MHz radar located at
Cape Kennedy, except the WSMR system is calibrated for C2. The NASA
system is used for wind shear measurements during space shuttle operations.
Received power for the WSMR system is observed for 1 min along each of the
three beams to derive C2, wind, and spectral width. Pulse coding applied to
each 8-us transmitted pulse produces 1-us nominal pulse lengths to provide
150-m resolution along each axis. Sampling is from 3.22 to 20 kmm MSL
altitude in 112 range gates. The performance of this radar is high because of
the large antenna (150-m diameter) and 250-kW transmitted peak power,
producing a power aperture product of 1 x 10° Wm. Nastrom and Eaton [12]
showed that upward-propagating gravity waves enhance C: and mechanical
turbulence into the lower stratosphere over WSMR.




4. Results

4.1 Transverse Coherence Length (r,) Measurements

Transverse coherence length (r,) measurements were taken during three periods:
21, 22, and 23 May 94; 8 and 9 Jun 94; and 23, 24, and 25 June 94. All
results are evaluated for a 0.5-pm wavelength and corrected for zenith viewing.
Figures 1, 2, and 3 display the results from the first data set in May. The
transverse coherence length r, is labelled "r-naught" in the figures. Arcturus
was sensed during the first 2 h at fairly high zenith angles in a direction over
the Tularosa Basin, possibly contributing to the rapid increase in values. Vega
was sensed from about 3:00 to 5:00 MST in a direction over forested terrain.
The next 2 days of data collection showed values fluctuating from a low near
1 cm to a high around 15 cm with the majority of the values near 8 cm. The
next data run, 8 to 9 Jun, showed somewhat higher values on the average, as
seen in figures 4 and 5. Figures 6, 7, and 8 present the results for the last data
session, 23, 24, and 25 Jun. The values were, in general, low on 23 Jun with
a slight trend of increasing r, values into the first few hours of 24 Jun.
Measurements commenced during midafternoon and showed low r, values, as
was expected because of surface convective activity. From about 17:00 to
19:00 MST, 1, increased dramatically from about 2.5 to over 16 cm. This
effect is attributed to entering the evening neutral event and is probably
enhanced because of the strong solar heating on the west-facing slope above
which the measurements were taken. For the remainder of the night, the 1,
values fluctuated between about 10 to 14 cm.

Figure 9 shows all the data collected during the 8 days plotted together versus
time, which displays the large variability that can be found even for a limited
time period and conditions. The least variability shown is during the afternoon
hours in which surface turbulence contributes heavily to the total profile.
Figure 10 displays a histogram of the total 1368 1, measurements. Generally,
1, and C? are found to show a lognormal or near lognormal distribution. [13,14]
The distribution (figure 10) would appear more lognormal if there were an even
distribution of measurements diurnally, with more low daytime values.




Apache Point Observatory, 21 May 1994
Differential Image Motion r-naught
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Figure 1. Transverse coherence length measurements on 21 May 94.
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Apache Point Observatory, 22 May 1994
Differential Image Motion r-naught
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Figure 2. Transverse coherence length measurements on 22 May 94.
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Apache Point Observafory, 23 May 1994
Differential Image Motion r-naught
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Figure 3. Transverse coherence length measurements on 23 May 94.
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Apache Point Observatory, 08 June 1994
Differential Image Motion r-naught
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Transverse coherence length measurements on 8 Jun 94.
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Apache Point Observatory, 09 June 1994
Differential Image Motion r-naught
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Figure 5. Transverse coherence length measuren{ents on 9 Jun 9%4.
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Apache Point Observatory, 23 June 1994
Differential Image Motion r-naught
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Figure 6. Transverse coherence length measurements on 23 Jun 94.
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Apache Point Observatory, 24 June 1994
Differential Image Motion r-naught
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Figure 7. Transverse coherence length measurements on 24 Jun 94.
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Apache Point Observatory, 25 June 1994
Differential Image Motion r-naught
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Figure 8. Transverse coherence length measurements on 25 Jun 94.
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APO, May and June 1994 Composite
Differential Image Motion r-naught
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Figure 9. Diurnal composite of all data in figures 1 through 8.

22




APO May, June '94 Distribution of
Differential Image Motion r-naught
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Figure 10. Histogram of all r, measurements during spring 94.

0 2 4 6 8 10 12 14 16 18 20

23




24

4.2

4.3

Surface Wind Data

The surface wind speed and direction data versus time for the three
measurement periods are shown in figures 11, 13, and 15 while figures 12, 14,
and 16 show wind roses of direction for the same periods. In general, wind
speeds were low, rarely exceeding 5 kn. The wind direction is of particular
interest. It is assumed that well-developed flow from the western side of the
ridge will produce the best seeing because of less turbulence being advected
from above the Tularosa Basin than from over ground surfaces. There are few
examples of flow from the basin direction during the measurement periods.
Figure 14 displays a westerly contribution, but figure 13 shows that this is
based on a limited number of data points. The westerly flow in figure 16 is
mostly during afternoon, a slope-wind effect caused by surface heating.

Sodar Measurements

Figures 17 through 19 show sodar-obtained time-height displays of
backscattered power during times similar to when r, was measured during the
first measurement period. Some wave activity, reaching several hundred meters
above the surface, occurs on all 3 days. The sodar results for 9 Jun 94
(figure 20) show the measurements that correspond to the second measurement
period. Turbulence was only detected in the lowest part of the profile. The
lack of turbulence above this level agrees with the increase of r, values when
compared to the first data session. The last data run (figures 21 through 23)
shows a general decrease in nighttime turbulence over the period with
considerable wave activity at the beginning. This also agrees with the r,
pattern. Figure 24 is an example of multilayered turbulence at APO, showing
the undulations caused by gravity waves. Figure 25 shows an example of a
morning transition event with convective activity occurring from about
1500 UTC.




Apache Point Observatory
SAMS Wind Data May 21, 22, 23, 1994
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Figure 11. Time series of wind speed and direction for 21, 22, and 23 May 94.
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Apache Point Observatory May 21, 22, 23 1994
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Figure 12. Wind rose of wind direction for 21, 22, and 23 May 94.
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Apache Point Observatory
SAMS Wind Data June 8, 9 1994
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Figure 13. Time series of wind speed and direction for 8 and 9 Jun 94.
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Apache Point Observatory June 8 and 9, 1994
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Figure 14. Wind rose of wind direction for 8 and 9 Jun 94.
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Apache Point Observatory
SAMS Wind Data June 23, 24, 25 1994
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Figure 15. Time series of wind speed and directiqn for 23, 24, and 25 Jun 94.
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Apache - Point Observatory June 23,24,25, 1994
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Figure 16. Wind rose of wind direction for 23, 24, and 25 Jun 94.
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Figure 17. Time-height display of sodar-obtained backscatter on 21 May 94.
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Figure 18. Time-height display of sodar-obtained backscatter on 22 May 94.
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Figure 19. Time-height display of sodar-obtained backscatter on 23 May 94.
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Figure 20. Time-height display of sodar-obtained backscatter on 9 Jun 94.
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Figure 21. Time-height display of sodar-obtained backscatter on 24 Jun 94 from
0100 to 1700 UTC.
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Figure 22. Time-height display of sodar-obtained backscatter on 24 Jun 94 from
1953 to 2400 UTC.
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Figure 23. Time-height display of sodar-obtained backscatter on 25 Jun 94.
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Figure 24. Time-height display of sodar-obtained backscatter showing pronounced
wave activity.
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Figure 25. Time-height display of sodar-obtained backscatter showing a morning
transition event.

4.4 50-MHz Radar Measurements

Surface wind measurements are often affected by local features. Free air
profiles of wind can be measured using doppler radars such as the 50-MHz
radar at the APRF. This system also measures profiles of C2. Figures 26
through 32 show 12 h of hourly-averaged wind profiles for each of the 8 days
r, was measured. The first two data periods showed most of the wind to be
generally westerly above about 4 km MSL with the highest wind speeds on
23 May between 10 and 15 km MSL. The results during the last data run show
mostly northerly flow throughout most of the troposphere. Hourly averages of
C? obtained from 50-MHz radar measurements are shown in figures 33 through
39, corresponding to the wind measurements previously shown. The results
show several persistent layers of C2 that are transported with the wind. Figure
40 displays an individual C% profile, illustrating the layering found in the
atmosphere.
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Figure 26. Wind speed and direction measured with the 50-MHz radar on 21 May 94.




05 00

GMT

31D AT
PRESSURE ({(MB)
22-MAY-1994

v
L3

%VMMMWW‘W%%@WW"

"

LV

1] MMM L T SR

l*f’ //JAJM MJJMHHIJ RTINS DA
MMMMMMMW%WW”“N
T 1 S D |
wfww%MMM%MW% h 2
ﬁ%W%Mwwwywwvw\j """"
e TR Yy
\wﬁﬂmwﬁwm“ww

ALL MODES

1+

1222

Babz WSMRE, MM

-,
o
Lej
L
0
(v}
=
<
=i
0
-~
-
&)
iDL
LR
-
=
yul
-
[

ARL

Wind Sp=ed

Wﬁwwwwmwmmw%;;
\ﬂ \‘W\»V\\meﬁwmﬂaw \w ‘ A
llllillllllllHlH

IE IGHT

ML (KD

37

Figure 27. Wind speed and direction measured with the 50-MHz radar on 22 May %4.
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Figure 28. Wind speed and direction measured with the 50-MHz radar on 23 May 94.
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Figure 29. Wind speed and direction measured with the 50-MHz radar on 9 Jun 94.
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Figure 33. C? profiles measured with the 50-MHz radar on 21 May 94.
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Figure 36. C2 profiles measured with the 50-MHz radar on 9 Jun 94.
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Figure 39. C? profiles measured with the 50-MHz radar on 25 Jun 94.
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5. Summary and Recommendations

Three main points regarding r, emerge from the results of this study during
spring 94 at APO:

1. Considerable variability in r, values, ranging from 1 to 18 cm, was found
during nighttime. Data were collected under a variety of wind conditions with
the surface wind predominantly coming from forested areas.

2. The onset of the evening neutral event showed a dramatic increase in 1,
presumably caused by radiation balance and associated sensible heat changes on
the west-facing slope immediately below ATMOS.

3. Sodar-derived time-height displays of backscattered power (proportional to
C?) data obtained at APO show obvious large-scale trends, agreeing with the
trends and patterns of r,. These sodar and 1, results demonstrate the
contribution of local meteorological conditions to r,.

Recommendations for future research examining r, effects at APO include the
following:

1. Measure r, under different conditions for an extended period to include
different wind speed and wind direction conditions, jet stream effects, seasonal
effects (with particular emphasis on snow cover), diurnal variation under
various atmospheric stabilities, and the evolution of the morning and evening
neutral periods.

2. Correlate simultaneous sodar measurements at APO, local meteorological
measurements, and 50-MHz radar measurements with the r, data to develop a
predictive seeing tool. Various parameters calculated from the data such as
stability, wind shear, eddy dissipation rate, and gravity wave effects. are
expected to enhance the predictive capability over correlations of raw data.
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Acronyms and Abbreviations

APO
APRF
ATMOS
CCD
SAMS
SDSS
SPO
WSMR

Apache Point Observatory

Atmospheric Profiler Research Facility

Atmospheric Turbulence Measurement and Observation System
charge-coupled device

Surface Atmospheric Measurement System

Sloan Digital Sky Survey

Sacramento Peak Observatory

White Sands Missile Range
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FT BELVOIR VA 22060

TAC DOWP
LANGLEY AFB
VA 23665-5524

ARMY TOPO ENGR CTR
CETEC ZC 1
FT BELVOIR VA 22060-5546

LOGISTICS CTR

ATCL CE
FT LEE VA 23801-6000

64



SCI AND TECHNOLOGY
101 RESEARCH DRIVE
HAMPTON VA 23666-1340

ARMY NUCLEAR CML AGCY
MONA ZB BLDG 2073
SPRINGFIELD VA 22150-3198

ARMY FIELD ARTLLRY SCHOOL
ATSF F FD
FT SILL OK 73503-5600

USATRADOC
ATCD FA
FT MONROE VA 23651-5170

ARMY TRADOC ANALYSIS CTR
ATRC WSS R
WSMR NM 88002-5502

ARMY RESEARCH LABORATORY
AMSRL BEM

BATTLEFIELD ENVIR DIR
WSMR NM 88002-5501

ARMY RESEARCH LABORATORY
AMSRL BE A

BATTLEFIELD ENVIR DIR
WSMR NM 88002-5501

ARMY RESEARCH LABORATORY
AMSRL BE W

BATTLEFIELD ENVIR DIR
WSMR NM 88002-5501

ARMY RESEARCH LABORATORY
AMSRL BE

ATTN MR VEAZEY
BATTLEFIELD ENVIR DIR
WSMR NM 88002-5501

DEFNS TECH INFO CTR
CENTER DTIC BLS

BLDG 5 CAMERON STATION
ALEXANDRIA

VA 22304-6145
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ARMY MISSILE CMND
AMSMI

REDSTONE ARSENAL
AL 35898-5243

ARMY DUGWAY PROVING GRD
STEDP 3
DUGWAY UT 84022-5000

USATRADOC
ATCD FA
FT MONROE VA 23651-5170

ARMY FIELD ARTLRY SCHOOL
ATSF

FT SILL OK 73503-5600

WSMR TECH LIBRARY BR
STEWS IM IT

WSMR NM 88001

Record Copy

TOTAL

66

10

96




